mbouldo.com /
spherical-curl
Spherical Coordinate System Calculator \( (r, \theta, \phi) \) v 1.0.0
\( \vec{A} = \ \)
\( ( \)
\() \ \hat{r} \ + \ \)
\( ( \)
\() \ \hat{\theta} \ + \ \)
\( ( \)
\() \ \hat{\phi} \ \ \ \ \ \ \)
Clear Input
\( \vec{A} = \ \)
\( ( \)
\() \ \hat{r} \ + \ \)
\( ( \)
\() \ \hat{\theta} \ + \ \)
\( ( \)
\() \ \hat{\phi} \ \ \ \ \ \ \)
Take Curl of Vector
\( \vec{\nabla} \times \vec{A} = \ \)
\( ( \)
\() \ \hat{r} \ + \ \)
\( ( \)
\() \ \hat{\theta} \ + \ \)
\( ( \)
\() \ \hat{\phi} \ \ \ \ \ \ \)
Take Curl of Product
\( \vec{\nabla} \times(\vec{\nabla} \times \vec{A}) = \ \)
\( ( \)
\() \ \hat{r} \ + \ \)
\( ( \)
\() \ \hat{\theta} \ + \ \)
\( ( \)
\() \ \hat{\phi} \ \ \ \ \ \ \)